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Abstract

This paper presents the design, construction, and control of a low-cost Stewart platform prototype, addressing the lack of affordable
options for research and education compared to expensive commercial systems. The platform achieves full six-DOF motion using
six linear actuators connecting a moving platform to a fixed base. A robust trajectory tracking controller based on feedback
linearization compensates for the system’s nonlinear dynamics, while an Extended Kalman Filter fuses actuator encoder and IMU
measurements for accurate real-time state estimation. The proposed framework is validated through simulation and experimental
tests on static and dynamic trajectories. Results demonstrate effective trajectory tracking and reliable state estimation under realistic
sensor noise and disturbances, confirming the platform’s suitability as an accessible research and educational tool.
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1. Introduction

The Stewart platform is a six-degree-of-freedom (6-DoF)
parallel manipulator renowned for its high stiffness, precision,
and ability to support large payloads relative to its size [1, 2,
3]. These properties make it well-suited for applications re-
quiring precise motion and load-bearing capability, including
flight simulators [4, 5], wave compensation in maritime oper-
ations [6, 7, 8], surgical robotics [9, 10], telescope position-
ing [11, 12], and more recently, fine adjustment of segmented
mirrors on the James-Webb Space Telescope (JWST) [13]. The
breadth of these applications highlights the platform’s versatil-
ity and ongoing relevance in both industrial and research do-
mains [14, 15, 16, 17, 18].

However, access to Stewart platforms for experimental re-
search is often restricted by high costs. Commercial sys-
tems typically employ precision actuators, high-resolution sen-
sors, and sophisticated onboard controllers, driving prices be-
yond the reach of many academic or small-scale laborato-
ries. For example, the Stewart platform by Acrome, which in-
cludes the necessary controller and software, is priced at USD
7,499 [19], whereas large-scale platforms for applications such
as flight simulation or heavy-duty testing can range from USD
12,000 [20] to EUR 50,000 [21]. In response, various low-cost
prototypes have been developed using alternative actuation and
sensing strategies to reduce manufacturing costs. Examples in-
clude a proof-of-concept educational platform [22] and a sur-
gical motion simulator that use servo motors instead of linear
actuators [10], as well as a Stewart platform-based haptic con-
troller driven by hobby servo motors [23]. Another low-cost
design [24] used several design changes to evaluate the perfor-

mance of 3D-printed components under simulated ocean wave
conditions.

In addition to affordability, accurate state estimation is essen-
tial for enabling advanced control strategies and ensuring reli-
able operation of Stewart platforms. State estimation for Stew-
art platforms has been approached through several methods.
Numerical techniques such as Newton–Raphson and Leven-
berg–Marquardt are commonly used to solve forward kinemat-
ics [25, 26, 27], but these iterative approaches are computation-
ally intensive and less suited for real-time applications [25, 27].
Alternatives include sampling pose–actuator length data for use
with a modified Denavit–Hartenberg formulation [28] and data-
driven approaches such as machine learning [29], although the
latter require large datasets for accurate results. The use of an
indoor-GPS was also explored for increasing the pose accuracy
of the Stewart platform [30].

Complementing state estimation, various control strategies
have been proposed to exploit the platform’s capabilities under
different operational requirements. Control strategies for Stew-
art platforms range from classical PID [31, 32, 33] to advanced
methods such as model predictive control and adaptive control
based on kinematic or dynamic models [34]. Other designs
have incorporated sliding-mode control with velocity feedfor-
ward compensation [7] or combined linear quadratic regula-
tor (LQR) and active disturbance rejection control [35]. More
recently, data-driven methods, including neural networks [36]
and reinforcement learning [37], have been explored to enhance
performance. While control strategies for Stewart platform are
abundant, many low-cost Stewart platforms employ only kine-
matic controllers without accounting for the system dynamics,
which are crucial when handling changes in dynamic model pa-
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Figure 1: The design of the Stewart platform prototype. Each distinct part of
the system is labeled with a corresponding number.

rameters such as component masses.
In this paper, we present a low-cost Stewart platform pro-

totype designed to balance affordability with the capability to
support advanced control research. The hardware combines
off-the-shelf components with custom-made parts fabricated
via computer-aided design (CAD) and low-cost manufacturing.
The system software integrates data acquisition, the platform’s
dynamic model, and real-time control. A feedback lineariza-
tion control scheme is implemented and integrated with an LQR
controller for optimal tracking, and an Extended Kalman Filter
(EKF) is developed for real-time state estimation from noisy
sensor measurements.

The main contributions of this work are:

1. An end-to-end design methodology for a low-cost Stewart
platform prototype, combining off-the-shelf components
with custom-fabricated parts using 3D printing and non-
commercial electronic boards, while achieving acceptable
motion precision for research applications.

2. A real-time feedback linearization control scheme inte-
grated with LQR for improved tracking performance.

3. An EKF-based state estimation method for real-time oper-
ation under noisy measurements.

Compared to existing studies, which often focus solely on theo-
retical modeling or controller design, this work provides a com-
plete framework that integrates hardware development, control
system design, and state estimation for a functional Stewart
platform prototype.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the developed prototype of the Stewart plat-
form. Section 3 derives the kinematic and dynamic models of
the Stewart platform, and states the objective of the control sys-
tem design. Section 4 proposes a feedback control framework
which consists of an EKF-based estimator and a feedback lin-
earization scheme. Section 5 presents detailed simulation and
experimental results of the closed-loop Stewart robotic platform
when subjected to varying desired poses. Finally, Section 6 pro-
vides concluding remarks and suggestions for future work.

2. Prototype Development and Description

The Stewart platform prototype discussed in this paper was
developed using a combination of off-the-shelf and custom-
made components to balance cost, functionality, and flexibil-
ity. Figure 1 illustrates the complete configuration of the devel-
oped Stewart platform prototype, highlighting several key com-
ponents that are fully integrated. The circular shape platform 1O
is made from 5 mm acrylic material with high precision print-
ing and serves as the end-effector with six degrees of freedom.
It is connected via a custom-made 3D-printed platform socket
2O to a POS 5 ASB bearing 3O, which functions as a passive

spherical joint. On the other hand, this bearing is also linked
to the upper actuator adapter 4O, which is attached to the rod of
the linear actuator 5O, acting as the primary driving mechanism
of the system. The Stewart platform is actuated by Actuonix
P16-200 linear actuators, allowing each leg to extend by up to
20 cm. Each actuator is equipped with a built-in encoder for
direct leg length measurement. Prior to its operation, each ac-
tuator was subjected to a detailed manual calibration process to
ensure an accurate and almost identical operational character-
istic with other actuators. The lower part of the linear actuator
is secured by the lower actuator adapter 6O, which connects to
a 10 mm universal joint 7O, further inserted into the base socket
8O mounted firmly on the circular shape base 9O, forming the

fixed structural foundation.
At the center of the platform, an ROS IMU sensor 10O is in-

stalled to measure the orientation and angular velocity of the
platform in real-time. The MyRIO-1900 board 11O is used as
the data acquisition module to process sensor data and execute
control algorithms in coordination with a Personal Computer
(PC). The entire electronic system is supported by a custom
custom-made Printed Circuit Board (PCB) 12O, which integrates
the motor driver circuits, the power supply, and the communi-
cation interface between the MyRIO board and the six linear
actuators. The power and control signals for the actuators are
managed by the PCB that integrate the L298N motor drivers.
The electrical schematic of the custom-made PCB is shown in
Figure 2, while its top-layer layout is presented in Figure 3.

The communication architecture of the Stewart platform as
illustrated in Figure 4 shows how relevant signals flow between
sensors, actuators, and the main control system. Inside the
MyRIO board, LabView software is installed with two main
components: a low level controller which handles real-time
control tasks, and the Input and Output (I/O) Transmitter which
manages signal communication to and from the PC. The PC is
responsible for high-level control, including trajectory planning

Figure 2: Electrical schematic of the custom-made PCB that interfaces the
MyRIO with a motor driver and position feedback of the actuators.
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and feedback processing, and features a Human-Machine Inter-
face (HMI) that allows the operator to configure commands and
monitor system states. The PC also includes an IMU decoder
to process and interpret the orientation and motion sensor data.

The prototype consists of a moving platform with radius rp =

16 cm and a base with radius rb = 20 cm. The joints bi and pi

are defined on these elements and symmetrically arranged in
pairs, with the joints bi defined in the base frame {B} and the
joints pi in the platform frame {P}. As illustrated in Figure 5,
each of the three pairs of jonts is centered at 0°, 120°, and 240°
angles on {B}, and at 60°, 180°, and 300° degrees on {P}, with a
±20° offset within each pair. The circular acrylic platform has
an effective radius of 16 cm (including joint connectors), a total
mass of mp = 0.528 kg, and the following moment of inertia:

Ip =

0.03 0.01 0.01
0.01 0.03 0.01
0.01 0.01 0.02

 . (1)

Each leg of the platform comprises a linear actuator with a
bottom (static) part of mass mb = 0.1187 kg and top (moving)
part of mass mt = 0.027 kg. The center of mass of each part is
assumed to be at its midpoint, giving distances of lb = 0.13861
m and lt = 0.1 m from the respective joints. The corresponding
inertia for the top and bottom parts are given as follows:

It =


1
3 mtl2t 0 0

0 1
3 mtl2t 0

0 0 0

 , Ib =


1
3 mbl2b 0 0

0 1
3 mbl2b 0

0 0 0

 . (2)

These physical parameters and signal configurations form the
foundation for the modeling and controller design processes of
the developed Stewart platform prototype.

Table 2 lists the Bill of Materials (BoM) for the developed
Stewart platform prototype. All components in the table are
commercially available, and the listed prices have been con-
verted to US dollars.

3. System Modeling and Problem Formulation

This section presents the kinematic and dynamic modeling of
the Stewart platform. The kinematic analysis defines the rela-
tionship between the platform’s pose and the length of the legs,
while the dynamic analysis describes the equations of motion
of the platform to be used in the controller design.

Figure 3: Top-layer layout (front view) of the costum-made PCB, illustrating
the connector arrangement for actuators, sensor inputs, and power distribution.

Figure 4: System configuration of the Stewart platform.

Figure 5: Joint configurations of the Stewart platform: joint bi positions on {B}
(left) and joints pi position on {P} (right).

3.1. Kinematic Model

Kinematic analysis studies how the components of a mecha-
nism move relative to each other, without considering the forces
that cause the motion [38]. In robotic systems, kinematic anal-
ysis is typically divided into Forward Kinematics (FK) and
Inverse Kinematics (IK). FK determines the pose of the end-
effector from known joint variables, while IK determines the
required joint states to achieve a desired end-effector pose. For
parallel manipulators such as the Stewart platform, computing
the solution of IK is simpler than that of the FK due to the
closed-loop structure of the system [25, 39, 40]. In this work,
IK analysis is performed to compute the required lengths of the
legs to achieve a specified pose of the platform.

This paper considers the kinematic structure of Stewart plat-
form in Figure 6(a) with three main structural elements: a fixed
base with an attached base frame {B}, a moving platform with
a platform frame {P}, and legs formed by six linear actuators
that connect the base to the platform. The prototype developed
from these elements is shown in Figure 6(b). The points of at-
tachment of the actuator on the base are denoted as bi and those
on the platform as pi, where i = 1, . . . , 6. These points serve as
passive joints that mechanically connect the legs to the platform
and the base, allowing relative motions to occur. The joints in
bi are universal joints, while those in pi are spherical joints.

The structure of the Stewart platform enables six DoF mo-
tions of the platform with respect to (w.r.t.) the base, consisting
of translational movements along the X, Y and Z axes, as well
as rotational movements about these same axes. The translation
of {P} w.r.t. {B} is described by t = [X′,Y ′,Z′]⊺, while the ori-
entation is represented by the Euler angle vector r = [ϕ, θ, ψ]⊺.
Here, ϕ denotes roll (rotation about the X-axis), θ denotes pitch
(rotation about the Y-axis), and ψ denotes yaw (rotation about
the Z-axis). The vector of generalized pose of the Stewart plat-
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Table 1: The BoM of the Stewart platform prototype.
No Components Quantity Unit Price Total
1 Actuonix P-16P Linear Actuator 6 $ 90.00 $ 540.00
2 L298N Motor Drivers 3 $ 0.85 $ 2.56
3 Acrylic (Platform) 1 $ 5.25 $ 5.25
4 Acrylic (Base) 1 $ 14.03 $ 14.03
5 Universal Joint 6 $ 7.32 $ 43.92
6 Rod End Bearing PHS5 6 $ 0.64 $ 3.84
7 National Instrument MyRIO 1900 1 $ 1,156.26 $ 1,156.26

Total $ 1,765.85

form is thus defined as

q = [t, r]⊺ = [X′,Y ′,Z′, ϕ, θ, ψ]⊺ ∈ R6. (3)

The orientation of the platform is further described by the ro-
tation matrix R ∈ SO(3), which maps the vectors from {P} to
{B}. The matrix R is computed from the Euler angles r using
the ZYX (yaw–pitch–roll) convention as follows [41]:

R =

cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψcϕ
sψcθ sψsθsϕ − cψcϕ sψsθcϕ − cψsϕ
−sθ cθsϕ cθcϕ

 , (4)

where sθ := sin(θ) and cϕ := cos(ϕ).
The generalized velocity of the platform is defined as q̇ =

[ṫ, ṙ]⊺, where ṫ = [X′,Y ′,Z′]⊺ is the linear velocity of the plat-
form, and ṙ = [ϕ̇, θ̇, ψ̇]⊺ is the time derivatives of the Euler
angles [31, 37]. The angular velocity expressed w.r.t. {P} is
denoted by ωp = [ωpx, ωpy, ωpz]⊺ and is defined as follows.

ωp =

1 0 −sθ
0 cϕ cθ sϕ
0 −sϕ cθ cϕ


ϕ̇θ̇
ψ̇

 . (5)

The angular velocity in frame B can be rewritten as follows.

ω̃ = Rω̃pR⊺, (6)

where ω̃ and ω̃p are the skew-symmetric matrices that corre-
spond to the angular velocity vectors ω and ωp, respectively.

Using the defined generalized variables, the kinematic rela-
tionship between the base, the platform, and the connecting legs
can now be established. Figure 6(a) illustrates the geometric
and vector representations of the Stewart platform used for this

(a) (b)

Figure 6: The schematic (a) and developed prototype (b) of Stewart platform.

purpose. In this figure, bi denotes the position vector from the
origin of {B} to the base attachment point of the i-th leg, while
pi denotes the corresponding vector from the origin of {P} to the
platform attachment point. For given platform’s pose q, the in-
verse kinematics problem of the Stewart platform can be solved.
This involves using the known platform pose and the geometric
configuration of the mechanism to determine the required leg
lengths. Specifically, the position and orientation of the plat-
form, along with the fixed locations of the joints, are used to
calculate the vector form of each leg. The vector of the i-th leg
is given as follows [39, 13]:

li = t + R pi − bi, (7)

where li is the leg vector expressed w.r.t. {B}. The correspond-
ing scalar-valued length of each leg is defined by the Euclidean
norm of li as follows:

si = ∥li∥. (8)

This IK formulation provides the necessary length that each leg
must achieve to realize a given pose of the platform.

3.2. Dynamics Model

The dynamic model of the Stewart platform is derived by ac-
counting for the dynamics of both the moving platform and the
connecting legs. The dynamics of the legs are formulated using
Euler–Lagrange method, while the dynamics of the platform
are modeled using Newton–Euler formulation [39]. This com-
bined model is essential to accurately capture the coupled mo-
tion of the system and serves as the foundation for implement-
ing model-based control strategies. Moreover, the dynamics are
expressed in task space, enabling a direct relationship between
the actuator forces and the platform motion in terms of position
and orientation. This formulation is particularly valuable for
the simulation and real-time control of the physical prototype.

3.2.1. Legs Dynamics Analysis
In the prototype, each leg is realized using a linear actuator

that functions as a prismatic joint. Each actuator is composed
of two primary rigid components: a fixed section, referred to
as the bottom part that is mounted to the base, and a movable
section, referred to as the top part that is connected to the mov-
ing platform. The bottom and top parts have masses of mb and
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Figure 7: The free-body diagram of the linear actuator used as a leg of the
Stewart platform (adapted and modified from [39]).

mt, respectively, and their centers of mass are located at dis-
tances lb and lt from the base and platform joints, respectively.
These components are subjected to external forces including
gravity (represented by the gravitational acceleration vector g),
the actuator-generated force f , and the constraint force fp act-
ing on the platform joint. Figure 7 illustrates the force distribu-
tion and structural configuration of the actuator which form the
basis for the dynamic modeling of each leg.

To determine the force fp on the i-th leg (defined as fpi), a dy-
namic analysis is used based on Euler–Lagrange equation that
takes into account the kinetic and potential energies of the ac-
tuator’s components. The resulting expression for the force fpi

is defined as follows:

fpi = (M1 +M2)i

[
I3×3 Rp̃⊺i R⊺

]
q̈ + Cai

[
I3×3 Rp̃⊺

i R⊺
]

q̇,

+ (M1 +M2)iω̃
2Rpi − (Q f + Qmtg + Qmbg)i,

(9)
where p̃i is the skew-symmetric matrix of pi, while the detailed
expressions for the mass terms M1 and M2, the Coriolis term
Ca, and the generalized force components Q f , Qmtg and Qmbg

are given in the Appendix. The readers may refer to [39] for
detailed derivation of (9). In essence, (9) relates the force ap-
plied by each actuator to the dynamic motion of the platform.

3.2.2. Platform Dynamics Analysis
The first step in the derivation of the platform dynamics is to

determine the control point of the platform. This point does not
always coincide with the origin of {P}, but can change depend-
ing on the position of the loads on its top. The vector of the
platform’s control point w.r.t. {B} can be written as follows:

qc = t + Rcp, (10)

where cp is the position vector of the control point w.r.t. {P}.
The acceleration of the control point qc satisfies (11).

q̈c =
[
I Rc̃⊺pR⊺

]
q̈ + ω̃2Rcp. (11)

Assuming equilibrium forces are acting on the platform, the
evaluation of Newton’s law on the platform gives the following:

mpq̈c = −

6∑
i=1

fpi + mpg, (12)

where mp is the platform’s mass. By substituting (11) into (12),
the platform dynamics w.r.t. {B} satisfies

[
mpI mpRc̃⊺pR⊺

]
q̈ + mpω̃

2Rcp = −

6∑
i=1

fpi + mpg. (13)

Combining the dynamic models of the legs and the platform,
a compact expression of the dynamic model of the Stewart plat-
form in the task space can be formulated as the following Equa-
tions of Motion (EoM) [39, 31]:

q̈ = M−1(q)
(
H(q)F − C(q, q̇)q̇ − G(q)

)
, (14)

where M(q) ∈ R6×6 is the inertia matrix, C(q, q̇) ∈ R6×6 ac-
counts for Coriolis and centrifugal effects, G(q) ∈ R6 is the
gravity vector, and H(q) ∈ R6×6 is the inverse transpose of the
Jacobian matrix that maps the forces on the actuators to gen-
eralized forces in the task space. Finally, F ∈ R6 denotes the
force inputs generated by actuators. The detailed derivation of
(14) is available in [39] and summarized in the Appendix.

3.3. Problem Formulation
Given the EoM for the dynamics of the Stewart platform in

(14), our objective is to construct a feedback controller that can
move the platform from an initial pose to a desired final pose.
To this end, let ξ = [q⊺, q̇⊺]⊺ be the vector of state variables of
the platform. One main challenge in designing a feedback con-
troller for (14) is that these state variables cannot be measured
directly. In this regard, an estimator should first be developed to
provide estimates of the state variables based on measurement
data obtained from available sensors. In this paper, the esti-
mator is developed using EKF algorithm, while the controller
is developed using the combination of feedback linearization
scheme and LQR control method. These estimation and con-
troller design are detailed in the next section.

4. Estimation and Control Systems Design

This section presents the design of a controller for the de-
veloped Stewart platform using the integration of a feedback
linearization scheme and the LQR method. Since the platform
state variables cannot be measured directly by the available sen-
sors, an EKF algorithm is designed to calculate the estimate of
these state variables and then used in the proposed feedback
control strategy. The integration of the feedback controller and
the EKF-based estimation scheme helps to achieve more accu-
rate motion execution with low computational demand. This
makes the framework suitable for real-time deployment on the
Stewart platform prototype.

4.1. Feedback Linearization Control Scheme
To achieve a precise motion of the Stewart platform, a practi-

cal control strategy based on the feedback linearization scheme
is implemented. This scheme essentially transforms the dynam-
ics into a linear system model that is suitable for the linear con-
trol design framework [42]. For the EoM of the Stewart plat-
form in (14), a feedback linearizing force control input F of the
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form (15) is designed to cancel the system nonlinearities:

F := H−1(q) (M(q)u + C(q, q̇)q̇ + G(q)) , (15)

where u is a virtual control input to be designed for the resulting
linear system. Substituting the force control input (15) into (14)
results in a double integrator model q̈ = u which can be written
as the following Linear Time-Invariant (LTI) system:[

q̇
q̈

]
=

[
03×3 I3×3
03×3 03×3

] [
q
q̇

]
+

[
03×3
I3×3

]
u. (16)

Using ξ = [q, q̇]⊺ as the state variables of the system, (16) can
be rewritten as the following compact LTI system model

ξ̇ = Aξ + Bu. (17)

The LTI system model (17) allows for the design of a linear
feedback control law of the form

u = −K{ξ − ξdes}, (18)

where ξdes is the desired state variable and K is the feedback
control gain. In this paper, the feedback control u is designed
using the well-known LQR scheme to ensure the minimization
of quadratic performance index J(ξ, u) as follows [43]:

u := arg min J(ξ, u), where J =
∫ t

0
(ξ⊺Nξ + u⊺Ou)dt, (19)

where N ∈ R12×12 and O ∈ R6×6 are the state and control in-
put weighting matrices, respectively, which directly influence
the system’s behavior: N penalizes deviations from the desired
state to achieve accurate tracking, while O regulates the con-
trol effort to ensure smooth operation by preventing excessive
actuator efforts. The optimal feedback gain K in (18) is calcu-
lated as K = O−1B⊺D, where D is a positive semidefinite matrix
which satisfies the continuous-time algebraic Riccati equation
of the form: A⊺D + DA − DBR−1B⊺D + N = 0.

4.2. State Estimation Using EKF
The implementation of control methods in Section 4.1 re-

quires feedback information about the state variables from sen-
sors. However, the Stewart platform prototype developed in this
research utilizes three types of measurement that do not directly
measure the state variables. The first measurement is obtained
from a built-in encoder embedded in each linear actuator which
measures the length of each leg on the platform. The encoder
measurement provides indirect information on the pose of the
platform, which can be calculated using the inverse kinemat-
ics relationship in (8). The second measurement is given by
an inertial measurement unit (IMU) mounted on the moving
platform to provide real-time rotational data which capture the
orientation state r. The last measurement is also obtained from
the IMU and provides ωp in (5). With this set of measurements,
the output function γ of the Stewart platform can be written as
the following equation:

γ = [s1, s2, s3, s4, s5, s6, ϕ, θ, ψ, ωpx, ωpy,ωpz]⊺ + v, (20)

where v ∼ N(0,V) ∈ R12 is a vector of Gaussian measurement
noise with mean zero and covariance matrix of V ∈ R12×12.

Using the output measurement (20), an EKF algorithm is im-
plemented to calculate the estimate of the state variables ξ̂ that
will be used to implement the control algorithm in Section 4.1.
The EKF is developed using the discrete-time version of the
system model in (16) and the output measurement in (20). In
particular, by using the forward Euler method for a sampling
period of ∆t, the discretization of (16) at each discrete time in-
stant k ∈ N of the following form is considered:[

qk|k−1
q̇k|k−1

]
=

[
I3×3 ∆t I3×3
03×3 I3×3

] [
qk−1|k−1
q̇k−1|k−1

]
+

[
03×3
∆t I3×3

]
uk−1 + wk,

ξ̂k|k−1 = Ad ξ̂k−1|k−1 + Bd uk−1 + wk,
(21)

where wk ∈ R12 ∼ N(0,W) is an asumed Gaussian process
noise with mean zero and covariance matrix of W ∈ R12×12. The
prediction model in (21) essentially models the prior state esti-
mate ξ̂k|k−1 as the function of the previous state estimate ξ̂k−1|k−1
and the control input uk−1. The implementation of the EKF also
uses the Jacobian matrix Γk of the measurement function (20),
evaluated in the forecast state estimate ξ̂k|k−1 as follows

Γk =
∂γ

∂ξ

∣∣∣∣∣
ξ=ξ̂k|k−1

. (22)

Algorithm 1 summarizes the EKF that is used to estimate
the Probability Density Function (PDF) of the state estimate
ξ̂ and the state covariance matrix P ∈ R12×12. Each iteration
of the EKF method consists of two stages, namely Prediction
and Measurement-Update. In the Prediction stage, the PDF is
propagated forward from the prior PDF according to

ξ̂k|k−1 = Ad ξ̂k−1|k−1 + Bd uk−1,

Pk|k−1 = Ad Pk−1|k−1 A⊺
d + V.

(23)

The Measurement-update stage then updates the forecast PDF
into a posterior PDF by incorporating the latest observation zk

provided in the output vector. The innovation vector z̃k in (24)
is constructed in this stage and is defined as the difference be-
tween the output vector zk and the predicted measurement of
the output evaluated at the predicted state estimate ξ̂k|k−1

z̃k = zk − γ|ξ=ξ̂k|k−1
. (24)

Finally, the posterior state estimate ξ̂k|k and the posterior covari-
ance Pk|k are calculated by incorporating the innovation vector

ξ̂k|k = ξ̂k|k−1 + Pk|k−1 Γk
⊺ (
Γk Pk|k−1 Γk

⊺ +W
)−1 z̃k,

Pk|k = (I − Kk Γk) Pk|k−1.
(25)

The EKF in Algorithm 1 begins with an Initialization phase
where the initial state ξ̂0|0 is estimated from encoder data using
numerical forward kinematics [27], and the initial covariance
P0|0 is chosen to be large enough to reflect initial uncertainty.

4.3. Overall Estimation & Control Systems Architecture
The overall architecture of the estimation and control systems
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Algorithm 1 Pseudo code of the EKF.

1: procedure Initialization
2: At k = 0, initialize ξ̂0|0, P0|0
3: return ξ̂0|0, P0|0

At each k, repeat the following procedures:
4: procedure Prediction
5: Compute forecast PDF data ξk|k−1 and Pk|k−1 using (23)
6: return ξ̂k|k−1, Pk|k−1

7: procedure Measurement-update
8: Compute measurement jacobian matrix Γk using (22)
9: Compute information vector z̃ using (24)

10: Compute posterior PDF data ξk|k and Pk|k using (25)
11: return ξ̂k|k, Pk|k

Figure 8: Block diagram of the proposed estimation and control scheme.

for the Stewart platform is shown in Figure 8. In this figure,
the desired state variable ξdes serves as the reference input to
the feedback control module, which in turn computes the de-
sired forces F that drive the current vector of state variables of
the Stewart platform to the desired one. The estimate of the
state variables used in the controller design is obtained using
the EKF module based on measurement data zk obtained at dis-
crete time step k from the leg encoders and the IMU sensor.
The EKF also incorporates the initial state estimates ξ̂0|0 and
their covariance P0|0 calculated using the combination of nu-
merical forward kinematics method and the measured encoder
data [27]. The posterior estimates of the state variables ξ̂k|k and
their covariance Pk|k from the EKF are then fed back to the con-
troller module. The proposed estimation and feedback loop al-
low the controller to adjust its commands based on the real-time
estimate of the state of the platform, which eventually enables
robust and accurate control action of the platform motion.

5. Simulation and Experimental Results

This section presents the simulation and experimental re-
sults of the implementation of the proposed feedback con-
trol scheme on the Stewart platform’s model and prototype.
The initial condition of the platform is set to be: ξ0 =

[0, 0, 0.32, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊺, making the platform horizon-
tally parallel and centered to the base. The performance of the
controller is tested under two desired motion scenarios of the
platform, namely (a) ”step” motion and (b) ”dancing” motion.

The ”step” scenario was conducted for a duration of 60 seconds,
while the ”dancing” scenario lasted 20 seconds. Both scenarios
used the same sampling interval of 0.01 seconds.

The ”step” motion scenario is designed to evaluate the plat-
form’s ability to track static desired states as defined in (26).

qdes = [xdes, ydes, zdes, ϕdes, θdes, ψdes]⊺,
q̇des = [0, 0, 0, 0, 0, 0]⊺.

(26)

In particular, state variables q are required to follow a piecewise
function whose value remained unchanged for a certain period
of time. The zdes is set to be a constant value of 0.4 meter, while
the other components are defined over time t as follows.

xdes =

0.075 if 10 ≤ t < 20
0 otherwise

, ydes =

0.075 if 20 ≤ t < 30
0 otherwise

,

zdes = 0.4, ϕdes =

0.15 if 30 ≤ t < 40
0 otherwise

,

θdes =

0.15 if 40 ≤ t < 50
0 otherwise

, ψdes =

0.15 if 50 ≤ t ≤ 60
0 otherwise

,

The ”dancing” motion scenario is designed to evaluate the
platform’s ability to track a dynamic trajectory in (27).

qdes = [0, 0, 0.4, 0.1 st, 0.1 ct, 0]⊺,
q̇des = [0, 0, 0.4, 0.1 ct,−0.1 st, 0]⊺.

(27)

A video demonstration of the presented results is given in [44].

5.1. Simulation Results

For the EKF implementation, the covariance matrix of the
process noise is set to V = diag(1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5)
while the covariance matrix of the measurement noise is set
to W = diag(10, 10, 10, 10, 10, 10, 1, 1, 1, 3, 3, 3). The ini-
tial value of the error covariance matrix is set to P0 =

10−2diag(100, 100, 100, 100, 100, 100, 1, 1, 1, 1, 1, 1). For the
LQR controller, the state weighting matrix is chosen as N =
diag(30, 30, 5, 30, 30, 200, 3, 3, 1, 3, 3, 20), while the control
input weighting matrix is set to O = 10I6. These parame-
ters were empirically tuned through several simulation trials to
achieve desirable estimation and tracking performance. For the
estimation problem, the objective is to ensure the convergence
of the state estimation error el according to (28).

lim
t→∞

el ≤ rl, el =
∥∥∥ξ̂ − ξ∥∥∥ . (28)

For the control problem, the objective is to ensure the conver-
gence of the tracking error et according to (29).

lim
t→∞

et ≤ rt, et = ∥ξ − ξdes∥ . (29)

In (28)-(29), rl and rt are some specified positive constants that
were set in the simulations to be rt = 0.02 and rl = 0.01.
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Figure 9: Simulated position variables of the ”step” motion scenario.

Figure 10: Simulated velocity variables of the ”step” motion scenario.

Figure 11: Simulated force control input of the ”step” motion scenario.

5.1.1. Simulation Result of ”Step” Motion
The trajectories of the position and velocity of the platform

for this scenario are shown in Figure 9 and Figure 10, respec-
tively, and the corresponding control input and estimation error
are shown in Figure 11. In these figures, the actual states are
represented by the green lines, whereas the estimated states are
plotted in blue dots. The close similarity between the actual
and estimated states confirms the effectiveness of the proposed
estimation scheme in capturing the system dynamics. As can
also be observed in Figure 9, the calculated force control input
drives the system to follow the desired pose.

Figure 11 shows that the estimation error el decreases as the
state variables reach the desired values with a final value of ap-
proximately 0.0012. In addition, the tracking error et shown
in this same figure also decreases and eventually converges to

values within the acceptable limit bound. These results demon-
strate that the proposed scheme can be applied to the static de-
sired trajectory case.

5.1.2. Simulation Result of ”Dancing” Motion
The state trajectories of the platform for this scenario are

shown in Figure 12, while the corresponding control inputs and
the estimation error are shown in Figure 13. The actual states
variables are shown as the green lines, while the estimated val-
ues are plotted as blue dot line. The estimation scheme effec-
tively captures the dynamics of the system, as evidenced by the
close alignment between the estimated and actual states. Fur-
thermore, the plots of variables ψ, θ, and velocity in Figure 12
demonstrate that the generated force control input successfully
drives the platform toward the desired pose. In general, these
results demonstrate the effectiveness of the proposed estimation
and control method for time-varying reference trajectory.

Compared to the ”step” motion scenario, the tracking error in
the ”dancing” scenario exhibits smoother variations and eventu-
ally converges to approximately 0.13. While this value exceeds
the tolerance defined in (29), it is attributed to the continuously
changing desired states and the accumulation of error across all
system states. Moreover, the estimation error also converges to
approximately 0.0037, which is well below the tolerance value
of rl = 0.01. It can be concluded from these results that the
platform is able to keep up with varying desired poses using the
proposed estimation and control methods.

5.2. Experimental Results
Due to the inherent challenges in directly measuring the true

state variables in real-time, the experimental results are primar-
ily compared against the outcomes of similarly tuned simula-
tions. This comparative analysis will allow for an assessment
of the prototype’s performance and the effectiveness of the pro-
posed algorithms in a real-world scenarios, despite the absence
of a perfectly known ground truth for the platform’s state. In
particular, the main control objective in the experiment is to
achieve the condition below:

lim
t→∞

ecs ≤ rcs, ecs =
∥∥∥ξdes − ξ̂

∥∥∥ , (30)

where rcs is a specified positive constant.

Figure 12: Simulated state variables of the ”dancing” motion scenario.
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Figure 13: Simulated force control input of the ”dancing” motion scenario.

Figure 14: Experimental position variables of the ”step” motion scenario.

5.2.1. Experiment Result of ”Step” Motion
The position and velocity trajectories of the platform in the

experiment are shown in Figure 14 and Figure 15, respectively.
In both figures, the estimated states are shown by blue lines,
while the desired trajectories are shown by the purple dotted
lines. The generated force control input and the tracking error
are shown in Figure 16. It can be seen in these figures that the
platform’s position and orientation estimates closely follow the
desired values, indicating the good performance of the proposed
EKF-based state estimation scheme. The results show that the
platform can follow changes in the trajectory along the linear
axes. While the X and Y axes exhibit noticeable fluctuations,
the estimated states still capture the general shape and timing of
the desired trajectories. Although the Z-axis shows only minor
fluctuations, those in the X and Y directions may appear more
pronounced due to differences in plot scale. Small disturbances
are also observed in the platform’s orientation. These fluctua-
tions are expected in experimental settings and do not signifi-
cantly impact the overall trajectory tracking performance.

The estimated velocity of the platform shows more notice-
able fluctuations compared to the position estimates. Although
these fluctuations are relatively minor in the linear velocity
components (Ẋ, Ẏ , Ż), they become more pronounced in the
angular velocity estimates (ϕ̇, θ̇, ψ̇). At certain time intervals,
the velocity profiles exhibit overshoot, which is primarily due
to rapid changes in the desired position. These overshoots oc-
cur as the platform moves toward the new desired pose before
coming to rest and stabilizing. This behavior is expected, as the

Figure 15: Experimental velocity variables of the ”step” motion scenario.

Figure 16: Experimental force control input of the ”step” motion scenario.

system must generate sufficient velocity to reach the target pose
promptly and accurately.

These results demonstrate that the controller successfully
generates the necessary force profiles to reach and stay in the
desired states, effectively tracking step-like commands. Despite
fluctuations in both position and velocity estimates, the actuator
forces remain bounded and exhibit no signs of instability or os-
cillatory behavior. This indicates that the controller is robust to
moderate levels of sensor noise without significant degradation
in performance. The consistent and stable force outputs fur-
ther support the effectiveness of the proposed control scheme,
particularly for static reference tracking tasks.

5.2.2. Experiment Result of ”Dancing” Motion
Figure 17 shows the actual and desired state variables of the

closed-loop system where the estimated states are plotted as
blue lines along with the desired states that are plotted as purple
dotted lines. Only state variables that are subjected to changes
in the desired trajectory are shown; the remaining axes are omit-
ted for clarity. The corresponding force control input and and
error observed during the experiment are shown in Figure 18.

For the angular motion axes ϕ and θ where dynamic trajecto-
ries were applied, the estimated states closely follow the desired
values. The platform’s orientation starts from zero and attempts
to reach the desired values within specific time steps. As shown
in Figure 17, there is a transient period before the platform fi-
nally achieves the target orientation. Although some deviations
are present, the overall response of the system is consistent with
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Figure 17: Estimated and desired states of the ”dancing” motion scenario.

Figure 18: Experimental force control input of the ”dancing motion scenario.

the desired profiles, indicating that the controller can effectively
handle variations in angular motions. These deviations can
be attributed to practical factors, such as actuator speed con-
straints, sensor noise, and unmodeled dynamics, which affect
the system’s ability to track rapidly changing references.

The estimated velocity results also show that the platform is
generally able to follow the desired velocity profile. For the
linear velocity Ż, an overshoot occurs as the platform moves
along the Z-axis before settling at the target velocity. This is
expected due to the momentum required to reach the desired
position. For the angular velocities ϕ̇ and θ̇, a gradual transi-
tion is observed from the initial to desired velocities, reflecting
the response time required by the physical system elements.
Although these fluctuations influence the generated actuator
forces, the platform still demonstrates successful tracking of the
desired state variables to achieve the required control objective.

6. Conclusion

This paper has presented the development of a prototype and
the implementation of a feedback control method on a 6-DoF
Stewart platform. The proposed control system combines the
feedback linearization scheme with the LQR method, and is
implemented using the estimated values of the system states
obtained using an EKF method. Simulation and experimen-
tal evaluations of the proposed estimation and control design
methods are performed w.r.t. static and dynamic reference tra-
jectories. These results showed that the proposed EKF method

produced reliable estimates of the state variables, and that the
proposed feedback control scheme generated appropriate forces
that help the platform to track the desired motion. These results
demonstrate the effectiveness of the proposed estimation and
control framework for real-time implementation. Future work
will examine more advanced methods to help improve robust-
ness and ensure safety of the platform operation.

References

[1] D. Stewart, A platform with six degrees of freedom, Proceedings of the
Institution of Mechanical Engineers 180 (1) (1965) 371–386.

[2] A. Antonov, Parallel–serial robotic manipulators: A review of architec-
tures, applications, and methods of design and analysis, Machines 12 (11)
(2024). doi:10.3390/machines12110811.

[3] H. Cheng, G. Liu, Y. Yiu, Z. Xiong, Z. Li, Advantages and dynamics
of parallel manipulators with redundant actuation, in: Proceedings 2001
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Expanding the Societal Role of Robotics in the the Next Millennium (Cat.
No. 01CH37180), Vol. 1, IEEE, 2001, pp. 171–176.

[4] M.-Y. Wei, S.-A. Fang, J.-W. Liu, Design and implementation of a new
training flight simulator system, Sensors 22 (20) (2022) 7933.

[5] Y. Huang, D. M. Pool, O. Stroosma, Q. P. Chu, M. Mulder, A review
of control schemes for hydraulic stewart platform flight simulator motion
systems, in: AIAA Modeling and Simulation Technologies Conference,
2016, p. 1436.

[6] Y. Cai, S. Zheng, W. Liu, Z. Qu, J. Han, Model analysis and modified
control method of ship-mounted stewart platforms for wave compensa-
tion, IEEE Access 9 (2020) 4505–4517.

[7] Y. Cai, S. Zheng, W. Liu, Z. Qu, J. Zhu, J. Han, Sliding-mode control
of ship-mounted stewart platforms for wave compensation using velocity
feedforward, Ocean Engineering 236 (2021) 109477.

[8] W. Qiu, S. Wang, A. Niu, K. Fan, G. Han, H. Chen, Modeling and analysis
of landing collision dynamics for an active helideck based on the stewart
platform, Ocean Engineering 297 (2024) 117107.

[9] S. Kizir, Z. Bingül, Design and development of a stewart platform assisted
and navigated transsphenoidal surgery, Turkish Journal of Electrical En-
gineering and Computer Sciences 27 (2) (2019) 961–972.

[10] V. Patel, S. Krishnan, A. Goncalves, K. Goldberg, Sprk: A low-cost stew-
art platform for motion study in surgical robotics, in: 2018 International
Symposium on Medical Robotics (ISMR), IEEE, 2018, pp. 1–6.

[11] X. Li, W. Zhou, D. Jia, J. Qian, J. Luo, P. Jiang, W. Ma, A decoupling
synchronous control method of two motors for large optical telescope,
IEEE Transactions on Industrial Electronics 69 (12) (2022) 13405–13416.

[12] I. Jikuya, D. Uchida, M. Kino, M. Kurita, K. Yamada, Structure of dis-
tributed control system in seimei telescope, SICE Journal of Control,
Measurement, and System Integration 14 (2) (2021) 111–118.

[13] F. Liang, S. Tan, X. Zhao, J. Fan, Z. Lin, Z. Shi, X. Kang, Kinematics
and dynamics simulation of a stewart platform, in: Journal of Physics:
Conference Series, Vol. 2333, IOP Publishing, 2022, p. 012026.

[14] Y. Patel, P. George, Parallel manipulators applications—a survey, Modern
Mechanical Engineering 2 (3) (2012) 57–64.

[15] N. Ghodsian, K. Benfriha, A. Olabi, V. Gopinath, A. Arnou, Mobile ma-
nipulators in industry 4.0: A review of developments for industrial appli-
cations, Sensors 23 (19) (2023) 8026.

[16] M. Zarebidoki, J. S. Dhupia, W. Xu, A review of cable-driven parallel
robots: Typical configurations, analysis techniques, and control methods,
IEEE Robotics & Automation Magazine 29 (3) (2022) 89–106.

[17] C. Yang, W. Ye, Q. Li, Review of the performance optimization of parallel
manipulators, Mechanism and Machine Theory 170 (2022) 104725.

[18] M. Russo, D. Zhang, X.-J. Liu, Z. Xie, A review of parallel kinematic
machine tools: Design, modeling, and applications, International Journal
of Machine Tools and Manufacture 196 (2024) 104118.

[19] Acrome, Stewart platform, https://acrome.net/product/

stewart-platform, accessed: 2025-08-12 (2025).
[20] PT-Actuator, 6dof stewart motion platform kits 6d-01, https:

//www.pt-actuator.com/product/stewart-motion-platform/,
accessed: 2025-08-12 (2025).

10



[21] MotionSystems (Poland), Ps-6tl-800 6-dof motion platform, https://
motionsystems.eu/product/motion-platforms/ps-6tl-800/,
accessed: 2025-08-15 (2025).

[22] M. Venkat Raaman, S. Aravind, R. Pavel, R. Kuppan Chetty, J. A. Dhan-
raj, Design and development of a general-purpose low-cost stewart plat-
form for laboratory teaching: A mechatronics approach, in: Advances in
Mechanical Engineering: Select Proceedings of CAMSE 2020, Springer,
2021, pp. 469–479.

[23] U. Kelesbekov, G. Marini, Z. Bai, W. Johal, E. Velloso, J. Knibbe, Stuet:
Dual stewart platforms for pinch grasping objects in vr, in: 2024 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR),
IEEE, 2024, pp. 309–318.

[24] D. Silva, J. Garrido, E. Riveiro, Stewart platform motion control automa-
tion with industrial resources to perform cycloidal and oceanic wave tra-
jectories, Machines 10 (8) (2022) 711.

[25] Z. Bingul, O. Karahan, Dynamic modeling and simulation of Stewart plat-
form, INTECH Open Access Publisher London, UK, 2012.

[26] Y. Wang, A direct numerical solution to forward kinematics of
general stewart–gough platforms, Robotica 25 (2007) 121–128.
doi:10.1017/S0263574706003080.

[27] M. Nategh, M. Agheli, A total solution to kinematic calibration of hexa-
pod machine tools with a minimum number of measurement configura-
tions and superior accuracies, International Journal of Machine Tools and
Manufacture 49 (15) (2009) 1155–1164.

[28] S. Karmakar, C. J. Turner, Forward kinematics solution for a general stew-
art platform through iteration based simulation, The International Journal
of Advanced Manufacturing Technology 126 (1) (2023) 813–825.

[29] D. K. S. Chauhan, P. R. Vundavilli, Forward kinematics of the stewart par-
allel manipulator using machine learning, International Journal of Com-
putational Methods 19 (08) (2022) 2142009.

[30] M. de Campos Porath, L. A. F. Bortoni, R. Simoni, J. S. Eger, Offline and
online strategies to improve pose accuracy of a stewart platform using
indoor-gps, Precision Engineering 63 (2020) 83–93.
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Appendix A. Notation

t Platform’s position vector w.r.t. {B}
ṫ Platform’s velocity vector w.r.t. {B}
r Euler angles vector
ṙ Euler angles vector time derivatives
ωp Angular velocity w.r.t. {P}
ω Angular velocity w.r.t. {B}
X′,Y ′,Z′ Position components
ϕ, θ, ψ Euler angles (roll, pitch, yaw)
q Generalized vector pose
q̇ Generalized velocity vector
q̈ Generalized acceleration vector
R 3D Rotation matrix
pi Position vector of the i-th platform joint w.r.t. {P}
bi Position vector of the i-th base joint w.r.t. {B}
βi Angular position of the i-th on the base
ρi Angular position of the i-th on the platform
I Identity matrix
mp Platform mass
mt Mass of the actuator’s top part
mb Mass of the actuator’s bottom part
lt Distance from actuator top to platform joint
lb Distance from actuator bottom to base joint
Ip Inertia matrix of the platform
It Inertia matrix of the top actuator
Ib Inertia matrix of the bottom actuator
M Inertia (mass) matrix
C Coriolis and centrifugal matrix
G Gravity vector
H Inverse transpose of the Jacobian matrix
F Actuation force or torque input vector
g Gravity acceleration vector
el State estimation error
et Tracking error
ecs Control system error
ξ State vector
ξdes Desired state vector
u Control input
A System matrix
B Input matrix
J LQR performance index
K State feedback gain matrix
N State weighting matrix (LQR)
O Control effort weighting matrix (LQR)
ξ̂ Estimated state vector
Ad Discrete system matrix
Bd Discrete input matrix
P State covariance matrix
z Output vector
ẑ Output model
z̃ Innovation vector
V Process noise covariance
W Measurement noise covariance
γ Output function
Γ Jacobian of γ w.r.t. ξ

Appendix B. Stewart Platform Model Derivation

Appendix B.1. Additional Kinematic Model Derivations

The unit vector of each Stewart platform leg can be calcu-
lated through:

ni =
li
si
. (B.1)

Additionally, the position vector of the joint platform w.r.t
frame {B} is computed by the following:

qp = t + Rpi (B.2)

and the time derivative is given by the following:

q̇pi =
[
I Rp̃i

⊺R⊺
]

q̇. (B.3)

Based on (B.3), the velocity of the legs can is defined by:

ṡi = n⊺i q̇pi. (B.4)

On the other hand, the velocity of the upper part and lower part
of the Stewart platform legs can be computed through (B.5) and
(B.6), respectively

vti =

(
I +

ltñi
2

si

)
q̇pi, (B.5)

vbi =

(
lbñi

⊺ñi

si

)
q̇pi. (B.6)

Finally, the angular velocity of the Stewart platform leg is de-
fined by:

ωli =
ñiq̇pi

si
. (B.7)

Appendix B.2. Legs Dynamic Model Derivation

For this subsection, the symbol i which is used to denote the
leg number will be omitted to avoid confusion. The Lagrange
equation of the Stewart platform leg is defined as follows:

d
dt

(
∂T
∂q̇p

)
−
∂T
∂qp
= Q, (B.8)

where T is the kinetic energy which is defined by:

T =
1
2

v⊺t mtvt +
1
2
ω⊺

l (It + Ib)ωl

=
1
2

q̇⊺p

((
I +

ltñ2

s

)⊺
mt

(
I +

ltñ2

s

)
+ (It + Ib) ñ⊺ ñ

s2

)
q̇p

=
1
2

q̇⊺p (M1 +M2) q̇p. (B.9)

Here, M1 and M2 are inertial term defined as follows:

M1 =

(
I +

ltñ2

s

)⊺
mt

(
I +

ltñ2

s

)
, (B.10)

M2 = (It + Ib) ñ⊺
ñ
s2 . (B.11)
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Next, we define the forces acting upon the leg

Q f = n f , (B.12)

Qmtg =

(
I +

ltñ2

s

)
mtg, (B.13)

Qmbg =

(
lbñTn

s

)
mbg. (B.14)

The generalized force is defined by:

Q = Q f + Qmtg + Qmbg + fp. (B.15)

The constraint force fp can be rewritten into (9). with Ca:

Ca =
mtlt
s2 (nq̇⊺p ñ⊺n + n⊺q̇pñ⊺ñ + ñ⊺ñq̇pn⊺)

−
mtl2t
s3 (n⊺q̇pñ⊺ñ + ñ⊺ñq̇pn⊺)

−
2(It + Ib)

s3 (ñ⊺ñq̇pn⊺).

(B.16)

Appendix B.3. Platform Dynamic Model Derivation
Combining equations (12) and (13) will produce the follow-

ing equation:

Mpq̈ + Cpq̇ +
[

mpI
mpRc̃p

⊺R⊺

]
ω̃2Rcp = HpFp +

[
mpI

mpRc̃p
⊺R⊺g

]
,

(B.17)
where:

Mp =

[
mpI mpRc̃⊺pR⊺

mpRc̃pR⊺ mpRc̃pc̃⊺pR⊺ + RIpR⊺

]
, (B.18)

Cp =

[
0 0
0 ω̃RIpR⊺

]
, (B.19)

Hp =

[
I . . . I

(Rp̃R⊺)1 . . . (Rp̃R⊺)6

]
, (B.20)

Fp =
[
fp1 fp2 fp3 fp4 fp5 fp6

]⊺
. (B.21)

The complete dynamic equation that combines the models
of the platform and the legs are defined in (14), in which the
details of each matrices are defined as the following:

M(q) = Mp +

6∑
i=1

[
I

Rp̃iR⊺

]
(M1 +M2)i

[
I Rp̃iR⊺

]
, (B.22)

C(q, q̇)q̇ = Cpq̇ +
6∑

i=1

[
I

Rp̃iR⊺

]
(Ca)i

[
I Rp̃iR⊺

]
q̇

+

[
mpI

mpRc̃⊺pR⊺

]
ω̃2Rcp

+

6∑
i=1

[
I

Rp̃iR⊺

]
(M1 +M2)iω̃

2(Rpi), (B.23)

G(q) = −
[

mpI
mpRc̃⊺pR⊺g

]
−

6∑
i=1

[
I

Rp̃iR⊺

]
(Qmtg + Qmbg )i, (B.24)

H(q) =
[

n1 . . . n6
(Rp̃1R⊺)n1 . . . (Rp̃6R⊺)n6

]
, (B.25)

F =
[
f1 f2 f3 f4 f5 f6

]⊺
. (B.26)
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