Design and Experimental Validation of Closed-Form CBF-Based Safe
Control for Stewart Platform Under Multiple Constraints
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Abstract— This paper presents a closed-form solution of a
Control Barrier Function (CBF) formulation for ensuring safety
in the operation of a Stewart platform prototype. The pro-
posed controller simultaneously enforces position and velocity
constraints, using an energy-based CBF for position safety
and a standard CBF for velocity safety. Instead of solving
the associated safety Quadratic Program (QP) at each control
step, an explicit closed-form solution is derived to compute
the safe control inputs, significantly reducing computational
cost and enabling real-time implementation. Simulation results
demonstrate that the closed-form and QP-based methods yield
identical control actions and successfully guarantee safe op-
eration. Experimental validation on the developed prototype
further confirms the suitability of the closed-form approach for
real-time deployment in safety-critical parallel robotic systems.

Keywords—closed-form solution, Control Barrier
Function, Stewart platform prototype, Experimental val-
idation

I. INTRODUCTION

Safety is a fundamental requirement in engineering and
robotics, ensuring that systems operate within predefined
constraints [1]. Control Barrier Functions (CBFs) provide a
formal framework for enforcing such constraints by mod-
ifying control inputs in real time [1]. However, practical
implementation faces three main challenges: (i) defining
valid CBFs for high-relative-degree constraints [2], (ii) han-
dling multiple simultaneous safety constraints [3], and (iii)
reducing the computation time of real-time Quadratic Pro-
gramming (QP) solvers [4], [5].

Several approaches have been developed to address the
high-relative-degree problem. Exponential CBFs (ECBFs)
[6] overcome this challenge for position-based safety con-
straints by introducing auxiliary dynamics that ensure expo-
nential convergence toward the safe set. High-Order CBFs
(HOCBFs) [7] generalize ECBFs by allowing more flexible,
nonlinear class-K functions, enabling broader applicability
and finer tuning of conservativeness. An alternative strategy
is to apply a reduced-order model for CBF design, though
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this can introduce divergence from the behavior of the full-
order system [8]. More recently, energy-based CBFs [9], [10]
incorporate kinetic energy into the barrier function, effec-
tively reducing the relative degree of second-order robotic
systems to one and simplifying the constraint formulation.
For enforcing multiple constraints, composition methods
such as the Log-Sum-Exp (LSE) approximation [3], [11],
[12] provide smooth, differentiable min/max operations.

While these methods address formulation challenges, real-
time applicability drives interest in closed-form solutions.
Closed-form CBF solutions replace online QP solving with
explicit analytical expressions, avoiding high computational
cost and potential feasibility issues. This method reduces
computation time and handles multiple constraints, with
applications in trajectory tracking [4] and multi-agent co-
ordination under disturbances and uncertainties [5]. A usage
of closed-form safety control has also been implemented for
a nonlinear system that utilized output-feedback controller
[13]. The LSE approximation has proven to be effective for
data-driven controllers, including reinforcement learning, by
eliminating solving QP in each step while preserving safety
guarantees [14]. Neural network (NN)-based controllers can
similarly benefit from closed-form safety filters that rapidly
project unsafe outputs into the safe set [15]. Recent ex-
tensions also incorporate input constraints [16] and multi-
constraint composition techniques [12], [17], further broad-
ening applicability. Although many closed-form techniques
are currently being explored, by the time of writing this
paper, there is no literature that explores the closed-form
solution that not only enforce multiple constraints, but also
enforces different types of CBF formulations.

Among various robotic platforms, the Stewart platform
is an especially relevant testbed for closed-form CBF con-
trollers, with no prior experimental demonstrations on paral-
lel mechanisms. This six-degree-of-freedom (6-DoF) parallel
manipulator offers higher payload capacity, stiffness, and
motion precision compared to its serial counterparts [18].
Its versatility has supported applications ranging from flight
simulation and marine wave compensation [19], [20] to
surgical platforms [21] and astronomical instrumentation
[22], [23]. At the same time, its nonlinear coupling and strict
workspace limits present significant challenges for safety-
critical control, making it an ideal platform for evaluating
CBF formulations.

Despite the progress in closed-form CBF methods, to
the best of our knowledge no prior work unifies different
CBF formulations, such as energy-based and velocity-based
CBEF, into a single closed-form controller, nor experimentally
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(a) The schematic of Stewart platform and (b) the developed

validates such an approach on a parallel manipulator like the
Stewart platform.

In this work, we propose and experimentally validate
a closed-form CBF controller for a Stewart platform that
simultaneously enforces multiple position and velocity safety
constraints. The method integrates different CBF types
within a unified analytical control law and employs a modi-
fied Log-Sum-Exp (LSE) approximation to enable adjustable
conservativeness across constraints. By eliminating the need
for online optimization, the approach achieves computational
efficiency suitable for real-time implementation on safety-
critical robotic systems.

II. PRELIMINARIES

This section will present the fundamental theories that
were defined in many previous research, which includes the
kinematic and dynamics analysis of the Stewart platform and
technical details of the CBF formulation.

A. Stewart Platform Kinematics, Dynamics and Control

The kinematic model of the Stewart platform in this paper
is based on the schematic shown in Fig. 1(a). The system
consists of three main components: a fixed base with a global
frame {B}, a moving platform with a body frame {P}, and
six linear actuators connecting them. The base attachment
points are denoted by joints b;, and the platform attachment
points by joints p;, for ¢ = 1,...,6. This setup allows six
degrees of freedom (DoF) for the platform: three translational

and three rotational motions with respect to the X, Y, and
Z axes.

Let £ = [X’,Y’, Z']" denote the platform’s position and
7 = [¢,0,1]7T its orientation, both relative to the base frame
{B}. The generalized coordinate of the system is defined as
q= It F]T. Let b; and §; be the positions of joints b; and
p;, respectively, expressed in {B}. The vector from b; to p;,
denoted f;, can be computed by [24]:

l; =t +Rp; — b; )
where R € SO(3) is the 3D rotation matrix corresponding to
the Euler angles 7. Given the platform pose ¢, the actuator
lengths ||I;]| can be directly computed via (1).

The dynamic model of the Stewart platform is derived by
decomposing the system into two main components: the legs
and the platform. The leg dynamics are obtained using the
Euler-Lagrange formulation, while the platform dynamics are
derived using the Newton-Euler formulation, as described in
[24]. By combining these models, the overall dynamics of
the Stewart platform in task-space can be expressed in the
following general form:

M(q)G + C(g, ¢)q + G(q) = H(q)F 2)

where M(q) is the inertial matrix, C(q,q) represents the
Coriolis and centrifugal terms, G(q) is the gravity vector,
H(q) is the inverse-transposed Jacobian matrix, and F is
the vector of actuator forces. The details of the derivation
are omitted in this paper, but can be seen in detail through
[24]-[26]. The result of the derivation converge to the same
general structure shown in (2).

The Stewart platform is controlled via full-state feedback
linearization, which cancels nonlinearities in the dynamic
model and transforms the system into a linear, decoupled
form. The control law is:

(e

where K is the feedback control gains, q and ¢ are the current
platform position and velocity, while gges and gq.s are the
desired platform states. The control input v is mapped to
desired actuator forces by Fgos = H™1{Mu+C¢+ G} Then,
F4es is used as the control input for the dynamic model
defined in (2). The details of the developed low-cost Stewart
platform prototype are shown in [].

B. Control Barrier Function

Consider a nonlinear affine control system defined as:
&= f(z) + g(x)u €

where z € D C R" is the state vector, and u € U C
R™ is the control input. In control theory, safety is typically
defined as the requirement that system trajectories remain
within a predefined safe set S [1], [10]. This set is commonly
expressed as:

S={zeR":h(x)>0}
0S ={z e R" : h(z) =0} %)
Int(S) = {x € R" : h(z) > 0}



where h : D C R™ — R is a continuously differentiable
function.

Definition 1. A function h(x) is called a CBF if there
exists an extended class-K function o such that the following
inequality is satisfied for all x € S [1]:

sup{(Lyh(x) + Loh(z)u} > ~a(h(x))  (®)

h(z,u)

where Lh(z) = Vh(z)f(z) and Lyh(z) = Vh(z)g(z).
A common choice is the linear function a(h) = «h, where
o > 0 is a gain that defines the trade-off between safety
enforcement and performance. Larger values of « allow more
relaxed constraint enforcement, while smaller values enforce
safety more aggressively.

This standard CBF condition applies when h(x) has
relative-degree one, meaning that the control input u ap-
pears in the first time derivative of h(z). However, systems
with second-order dynamics, such as the Stewart platform,
require a higher-order CBF formulation, since the control
input appears only after differentiating h(x) twice [1], [6].
In contrast, the velocity-based constraints are inherently
relative-degree one and thus admit the original first-order
CBF condition.

C. Energy-Based CBF

An approach to address the relative-degree problem is the
Energy-Based CBF, which reformulates the safety constraint
of a second-order system to possess relative-degree one. This
formulation incorporates the system’s kinetic energy into the
safety function, allowing velocity terms to be included into
the constraint. As a result, the first-time derivative of the
function naturally yields acceleration-level terms that include
the control input, making the constraint enforceable via a
first-order condition. The energy-based safety function is
given by [10]:

1
hp = =54 Mg+ ach ™M
The corresponding energy-based safe set is defined as [10]:
Sp ={(¢,9) € @ xR* : hp(q,¢) > 0} ®)

Here, Sp C S, and the parameter o, modulates the conser-
vativeness of the safe set. A larger a, results in a set Sp
that more closely approximates the original safe set S. To
ensure constraint satisfaction, the nominal control input F ;.
is minimally adjusted using a Quadratic Program (QP) [10].

Definition 2. For a fully-actuated robotic system governed
by the dynamics in (2), assume a position safety constraint
h defines a corresponding set S as in (5). Let hp denote the
energy-based safety function, inducing a safe set Sp defined
in (8). A control policy that ensures safety over the set Sp
is given by:

F* = arg min ||F — Fye||?
FER™

S.t. —qTHF + G(Q)Tq + Oleh 2 _a(hD (qa q)) (9)

hp(q,4,F)

A closed-form solution to this QP can also be derived by
considering the Karush-Kuhn-Tucker (KKT) conditions [10],

[27]: N
Ha @ e
F* = Fyes + < HTdlI2 77 (10)
e {0, U >0
and the safety violation term W is defined by:
¥ =hp +alhp(q,q)) (1D

Where a(hp(q,¢)) = ahp. This formulation allows the
use of relative-degree-one CBF conditions on second-order
systems without requiring higher-order Lie derivatives.

D. Velocity CBF

In addition to enforcing position safety, velocity con-
straints are essential due to the platform’s limited workspace.
To address this, we introduce a velocity-based CBF that
directly constrains the system’s velocity. Let the velocity
CBF be defined as h,(g), which is a function that take the
system’s velocity as an input. Since h, has relative degree
one, its derivative includes the control input and allows direct
enforcement through a standard CBF formulation. The first-
time derivative of h, is then defined as }.LU

Definition 3. Consider a robotic system governed by the dy-
namics in (2). Let h, be a velocity-based safety constraint. A
controller that ensures forward invariance of the associated
safe set can be synthesized using:

F* = arg min ||F — Fye,||?
] FeR™ (12)
st hy > —a(hy(§))

The corresponding closed-form solution of (12) is defined
by the following:

M_'H
F* _ Fdes + TM-TH][? \111;7 \I/U <0 (13)
0, v, >0
while the safety violation term ¥, is defined by:
\IJ'U = hv + ay (hv) (14)

where «,(hy) = ayhy.

III. SYSTEM FRAMEWORK AND PROBLEM
FORMULATION

To ensure safety in both position and velocity states,
the corresponding constraints must be integrated into the
control formulation. For QP-based CBFs, this integration
is straightforward: the constraints are stacked into a single
inequality, and the solver handles them jointly. However, in
a closed-form setting, incorporating both requires analyzing
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Fig. 2. The architecture of the proposed Stewart platform controller.

multiple KKT conditions and resolving the interaction be-
tween distinct safety constraints analytically. Moreover, due
to the multiple DoF that the Stewart platform system has, it
is important to ensure safety specifications across multiple
axes. We define the problem statement as follows:

Problem IIL.1. Given the Stewart platform dynamics in
(2), derive a closed-form Control Barrier Function (CBF)
that enforces both position and velocity safety constraints,
based on the quadratic programming formulations in (9)
and (12). The formulation should also accommodate the
use of different CBF parameters across constraints, enabling
resolution of conflicting safety requirements.

In response to Problem III.1, we propose a Stewart
platform controller architecture as shown in Fig. 2. We
present two contributions: (1) a closed-form solution that
simultaneously enforces position and velocity safety, and (2)
flexible CBF parameter tuning across conflicting constraints.

IV. CLOSED-FORM CBF FOR POSITION AND VELOCITY
SAFETY

To address Problem III.1, we aim to construct a controller
that ensures both position and velocity safety. This is for-
mulated as a QP that combines both position and velocity
constraints from (9) and (12):

F* = arg min ||F — Fge,||?
FeRm™
st. —¢"HF 4+ G(q)" ¢ + ach > —a(hp(g, )

hp(g,4,F)
— (M~ (H(¢)F — C(q, d)q — G(q))) = —aw(hu(q))

hy(4,Faes)

5)
To avoid solving the QP online at every time step, we derive
an explicit closed-form controller using the KKT conditions.
The resulting controller behaves in a piecewise function,
depending on which constraints are active: If no constraint
is active, the controller applies the nominal input Fg.s. If
only one constraint (either position or velocity) is active, the
corresponding single constraint solution from (10) or (13) is
used. If both constraints are active, the following closed-form

control law is applied:

F* = Fyes — % ()\1 (HTG)" + X (M—lH)T) (16)
as = are the control-dependent terms introduced in (10)
and (13), respectively. Moreover, A; and )\, are the La-
grange multipliers associated with the position and velocity
constraints, respectively. These are obtained by solving the
following linear system:

3l 12

Bj N l; (M~'H) (HT¢)"

(H7q) (M~ H)
B2

1
2

with U and ¥, defined in (11) and (14), respectively. Once
A1 and Ao are computed, they are substituted into (18) to
compute the final control input.

Theorem 1. Consider a fully-actuated robotic system with a
dynamic model described by (2). Let h and h, be the safety
constraints for the position and velocity of the system. Then,
the control input that enforces both constraints is given by
F* = Faes + Fsafe, where:

”fﬁ\l& v <0,9,>0
ey U >0,0, <0

Faage =4 Tl v 20T s U
—5(May +Xay), Yand¥, <0
0, YandV¥, >0

This piecewise formulation ensures safety by modifying
the nominal control input only when a constraint is at
risk of being violated. It should be noted that the closed-
form solution defined in (18) only considers one position
constraint and one velocity constraint.

Proof: We begin by applying KKT conditions to the
QP in (15) with two inequality constraints, denoted c¢; and
co. The Lagrangian is:

L = ||F — Fdes||2 + A1cq + Aaeo

. (19)
= (F - Fdes) (F - Fdes) + )\101 + )\2C2



The KKT conditions are [28]:

Stationarity: VL =0

Dual feasibility: A, A2 >0

Primal feasibility: c¢1,c2 <0
Complementary slackness: \;c; =0

Each constraint ¢; < 0 is defined as a;F — b, < 0,
where, in the context of the CBF inequality defined in
(6), a; corresponds to the Lie derivative —Lgh(x) term,
while b; corresponds to the a(h(x)) + Lfh(zx). Solving the
stationarity condition yields:

VL =2(F* —Fas) + Maj +Xoay =0 (20)
Next, we solve for F':
. 1
F* = Fges — 5(AlalT + Aoay) 1)

We now consider the cases based on which constraints are
active.

a) Case 1—No active constraints: This means \; =
A2 = 0. Substituting into the expression above:

F* = Fdes (22)

This corresponds to the case where no safety intervention is
required.

b) Case 2—Only one constraint is active: Suppose
only constraint c; is active (where ¢ is 1 or 2). The stationarity
condition becomes:

)\ia»T

F*:Fdes_ 21

Substituting this expression into the active constraint ¢; =
a; F* —b; = 0 gives:

(23)

Nl
a5(Faes — Z50) — b = 0 24)
Solving for \;, we obtain:
2(1)2 — aiFdes)a,T
N=—— 25
Tail? 2
Substituting this back into (23):
- _ a.F..aT
F* = Fyo, + (bi — aiF ges)a; (26)

laz|?

This corresponds to the closed-form solution when only one
safety constraint is active. Since it considers two constraints,
it produces two cases in which one of the constraint is active
when the other is not.

c) Case 3—Both constraints are active: We substitute
(21) into both constraints:

1
al(Fdes — 5(/\161? + )\QGQT)) - b1 =0
1 27)
GQ(Fdes — 5()\10/? + )\gaQT)) - bQ =0

This results in a system of two linear equations in Ay and Ao,
which can be solved analytically. The solution corresponds

to (17), and the multipliers are substituted back into the
expression (21) to yield the final control law.

Corollary 1. The CBFs defined in (18) only considers
one position and velocity constraint. To enforce multiple
constraint, they functions can be combined using a smooth
min approximation via the Log-Sum-Exp (LSE) function:

1 N
hpos = —Eln(z e_thi)
i=1

. 28)

1 kha
huel = 7Eln(ze m)
=1
where k > 0 controls the smoothness of the approximation,
hp; denotes the i-th energy-based position constraint, and
hy; denotes the i-th velocity constraint.

Due to the combined constraints, the closed-form solution
defined in (18) is also changing. The derivation steps are
the same, with the only change are with the h and h. The
inequality constraints defined in (15) is then changed into
the following:

hpos Z _a(hpos)
hvel Z *av(hvel)

where hpos and hvel are the first-time derivatives of the
respective functions. Thus, the closed-form solution, while
the take the same derivation steps as shown in the proof, is
defined as F* = Fyes + Fsqpe, where:

(29)

”;#\Il, v <0,9,>0
A 2o v>0,v,<0
Faape = 4 1770 (30)
—E(Alap + )\gav ), Yand ¥, <0
0, Yand¥, >0
where
N
ap = Z Wpi Qs
o 31)
Gy = Z Wy Gy
i=1
and the weights are defined by
Wi = e(hpi—hvet)
(32)

Wy = e(hm‘*hucz)

Remark 1. To allow different safety—performance trade-offs
for each constraint, we introduce an a-weighted LSE:

1 N
s = —cin(3 et
i=1

N

1 ih
hvel = _Eln(z e—kaml m)

i=1

(33)

where o; and ow,; are positive scaling parameters for the i-
th position and velocity constraints, respectively. The closed-
form CBF formulation is still following the same structure as
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written in (18). Due to the inclusion of the CBF parameters
within the LSE, the class-KC function for the position and
velocity is then defined as a(h) = hpes and ay,(hy) = hyel,
respectively. Consequently:

v = hpos + hpos

. (34)
\Ilv = hvel + h'uel

As an example, consider three different functions, defined
by hi(x) where ¢ = 1,2,3. The objective is to find the
minimum values across all = values using the modified LSE
method. et £k = 1,2,5,10 and ay = 1.2, as = 1, ag = 0.8
for each corresponding functions. The result of the example
is shown in Fig. 3. The real minimum values of the three
functions are denoted with the black solid line. The figure
shows the result of the original and the proposed LSE. The
example shows that with the proposed LSE, the parameter
«; can influence the approximation, making each constraint
more prone to violating or making it more conservative. In
turn, it will make the safety filter much more sensitive or
relaxed to the constraint violations, depending on the o
value correlated to the individual constraints.

As an illustrative case, we consider the enforcement of
multiple safety constraints on the Stewart platform. The plat-
form is set reach a desired linear positions near the bounds.
Using the original LSE with uniform CBF parameters (o =
ae = a,, = 1), the results reveal conflicting constraints along
the Z-axis, manifested as fluctuations in the actuator forces
(Fig. 4). In contrast, our proposed weighted LSE formulation
incorporates distinct CBF parameters within the LSE. By as-
signing o = 10 and «, = 0.5 for the Z-axis constraints, the
resulting safety filter generates smoother force profiles and
maintains steady Z-axis velocity, demonstrating improved
stability of the control inputs.

——— Original LSE ====.Modified LSE

1072

10 \ ™

15
time (s)

Fig. 4. Comparison between the original and modified LSE.

V. SIMULATION AND EXPERIMENT RESULTS

A Stewart platform prototype was developed for real-
world experiments using a combination of off-the-shelf and
custom-fabricated components. The prototype was made
by considering the production cost and potential research
capabilities. The platform’s legs are driven by six Actuonix
P-16P linear actuators with built-in potentiometer feedback,
allowing precise length control based on platform state
measurements. Additionally, an IMU sensor provides accu-
rate measurements of the platform’s angular motion, com-
plementing the potentiometer feedback from the actuators.
A National Instruments (NI) myRIO-1900 embedded real-
time controller, programmed in LabVIEW, manages data
acquisition and control: it receives sensor readings and sends
actuation commands through motor drivers. Structural com-
ponents such as the platform, base, and joint connectors were
custom-designed in CAD to match the actuator geometry,
with the platform and base laser-cut from 5 mm acrylic and
the joint connectors 3D-printed from a durable material. The
platform has a real radius (the physical acrylic disk radius)
and an effective radius (distance from frame origin to the
joints), the latter determined by joint placement. Hardware
specifications of the prototype are summarized in I, and the
assembled prototype is shown in Fig. 1(b).

This section presents simulation and experimental results
to evaluate the the proposed methods in enforcing safety
constraints while maintaining system performance on the
Stewart platform. The analysis focuses on the role of CBFs
in regulating motion and ensuring stability under multiple
simultaneous constraints. The simulation results compare
the closed-form and QP-based implementations of CBFs,
highlighting their respective abilities to enforce safety and in-
fluence system behavior, while also showing the advantages
that the closed-form solution offers in terms of computational
loads. In addition to that, the experimental results compare
the two CBF methods when applied to the Stewart platform
prototype.



A. Scenario and Parameter Setup

For the simulations and experiments, initial condition of
the platform is set to the following states:

qo = [Oa070'470a0,0]T7 (10 = [O,O,O,O,O,O]T (35)

where qg and ¢g are the initial position and velocity, respec-
tively. The constraints are only applied for the upper position
and velocity of the platform. The position constraints are
defined by hx = hy = 0.11m, hz = 0.51m. Meanwhile,
the veloctiy constraints are defined by h,x = h,y =
15 x 1073m/s, hyz = 10 x 10~3m/s.

The platform is commanded to move along all three
translational axes. It evaluates the combined position and ve-
locity constraint enforcement capability of the proposed CBF
method and demonstrates the effectiveness of the proposed
smooth approximation used in the closed-form solution. The
platform is required to achieve and maintain a sequence of
distinct static poses as defined below:

Qdes = [Xdes» Ydesa Zdes; ¢des; adesa 'l/)des]T
qdes = [Oa Oa 07 07 07 O]T

Each component of g4 follows a piecewise function defined
as:

(36)

0.1, if0<t<10
Xdes = .
0, otherwise
0.1, if10<t<20
Ydes = .
0, otherwise 37
0.45, if 20 <t < 30
Zges = 1 0.5, if 30 <t <40
0.4, otherwise

B. Simulation Result and Discussion

Simulations compared the Stewart platform’s response
under two CBF implementations: a closed-form solution
and a QP-based formulation. Both used identical parameters
(a = ae = ay, = 1) except for the Z-axis velocity constraint,
where «, = 2. Figure 5 shows position, velocity, and
computation time for all axes.

TABLE I
STEWART PLATFORM PARAMETERS

Component
Embedded Device

Specifications

NI myRIO-1900

Custom-cut acrylic with 5 mm thickness
Real base radius: 30 cm
Effective base radius: 20 cm
Real platform radius: 15 cm
Effective platform radius: 16 cm
L298N Motor Driver

Actuonix P-16P Linear Actuator
with potentiometer feedback

and 20 cm stroke

PHS5 Rod-End Bearing
Universal joint

Inner hole diameter: 10 mm
Outer diameter: 16 mm

Hfi-b9 ROS IMU Module

Platform and Base

Motor Drivers

Actuators

Platform joint

Base joints

IMU Sensor

Desired

“:H,'nsafc []Safe No CBF =——— QP ====:CF = = .Limit

0.05

77777777

vy (m/s)

0.05 I I I I I I I

0.05

,,,,,,,,
- W

0 5 10 15 20 25 30 35 40
time (s)

vy (m/s)
/

0.06

5004

—

E 002 [\ {\

N 0 W 2 SN

002 s s s s s s s
0 5 10 15 20 25 30 35 40
time (s)
Fig. 5. Simulation results of the proposed controller that is implemented

on the Stewart platform system.

Both controllers maintained safety across all axes with
similar tracking accuracy. Differences emerged when multi-
ple constraints were active, particularly in the Z-axis where
enforcing X and Y constraints induced unintended Z mo-
tion due to dynamic coupling. Once X and Y constraints
were relaxed, Z tracking recovered. Performance-wise, both
method yielded similar results, which validate the closed-
form solution of the proposed controller.

The main distinction lies in computation time: the closed-
form method averaged 1.6016 x 10~* seconds per iteration,
versus 0.0061 seconds for the QP. The closed-form approach
computation time is about 38 times faster than the QP, which
validate the fact that the closed-form method requires less
computational time.

C. Experiment Results and Discussion

Experiments on the Stewart platform prototype used the
same scenarios and constraints as in simulation, ensuring
consistent evaluation. Full-state feedback was provided, with
an Extended Kalman Filter for state estimation. The CBF
parameters matched the simulation, except for the Z-axis
velocity constraint (o, increased from 2 to 100) to improve
enforcement under unmodeled real-world effects.

Figure 6 compares the operation with and without the
proposed CBF. The controller successfully enforced multiple
constraints, maintaining operation within safety limits. The
computational time of the QP method averaged 2.4 x 1073
seconds per iteration, while the closed-form averaged 4.40 x
10~* seconds. It makes the closed-from method about 5.4
times faster and it avoided the large time spikes seen in the
QP during constraint violations.

VI. CONCLUSIONS

This paper presented a CBF controller to ensure both
position and velocity safety for a Stewart platform. Sim-
ulation results demonstrated that the proposed controller
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proposed CBFE.

successfully enforces safety constraints, while also validating
the use of the modified LSE method for approximating
the min function to combine multiple constraints. Although
differences were observed between the QP-based and closed-
form implementations, as well as between simulation and
experiment, these are attributed to unmodeled dynamics,
parameter tuning differences, and sensor noise in real-world
settings. Despite these variations, the experimental results
confirm that the proposed controller effectively guarantees
safe operation of the Stewart platform prototype.

Future work will explore the integration of control input
constraints into the closed-form framework. Additionally,
adaptive CBF formulations that can handle model uncertainty
and external disturbances, as well as configuring conser-
vativeness of the safety will be investigated to improve
robustness and generalizability.
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